Electricity situation in generation constrained power systems creates a high level of inconvenience for both utilities and their consumers. In this paper, we examined the causes of the constraints and the mitigating methods being adopted. The demand for electricity cannot be allowed to exceed the available generation as it could cause the entire power system to collapse. Therefore, electricity utilities are motivated to turn off some sections of the network in order to reduce the demand. Lack of funds makes it difficult for such systems to increase their generation capacity. A key concern is the hardship imposed by the sectional blackouts that they create. Smart metering promises an interim solution but the cost of deployment is of great concern. We proposed a smart metering simulation tool which is then used to model a micro-load manageable smart metering system based on certain priorities of loads. Algorithms and optimisation techniques are then developed to micro-load manage the demand so as to maintain some level of customer essential energy requirements. Simulation result shows that the proposed system is efficient in micro-load managing electricity demand. The proposed system has the potential to prevent total blackouts and associated inconveniences as well as improve the efficiency of such power systems.