Inkjet-printed graphene for flexible micro-supercapacitors

LT Le, MH Ervin, H Qiu, BE Fuchs… - 2011 11th IEEE …, 2011 - ieeexplore.ieee.org
LT Le, MH Ervin, H Qiu, BE Fuchs, J Zunino, WY Lee
2011 11th IEEE International Conference on Nanotechnology, 2011ieeexplore.ieee.org
Here we report our multi-institutional effort in exploring inkjet printing, as a scalable
manufacturing pathway of fabricating graphene electrodes for flexible micro-
supercapacitors. This effort is founded on our recent discovery that graphene oxide
nanosheets can be easily inkjet-printed and thermally reduced to produce and pattern
graphene electrodes on flexible substrates with a lateral spatial resolution of~ 50 μm. The
highest specific energy and specific power were measured to be 6.74 Wh/kg and 2.19 …
Here we report our multi-institutional effort in exploring inkjet printing, as a scalable manufacturing pathway of fabricating graphene electrodes for flexible micro-supercapacitors. This effort is founded on our recent discovery that graphene oxide nanosheets can be easily inkjet-printed and thermally reduced to produce and pattern graphene electrodes on flexible substrates with a lateral spatial resolution of ~50 μm. The highest specific energy and specific power were measured to be 6.74 Wh/kg and 2.19 kW/kg, respectively. The electrochemical performance of the graphene electrodes compared favorably to that of other graphene-based electrodes fabricated by traditional powder consolidation methods. This paper also outlines our current activities aimed at increasing the capacitance of the printed graphene electrodes and integrating and packaging with other supercapacitor materials.
ieeexplore.ieee.org
以上显示的是最相近的搜索结果。 查看全部搜索结果

Google学术搜索按钮

example.edu/paper.pdf
搜索
获取 PDF 文件
引用
References