Attenuating the effects of severe ground motions on buildings is always one of the most popular topics in structural engineering research. The reduction of seismic demand on structures can be achieved by providing certain degree of flexibility in the structure by installing the devices having low horizontal stiffness. Among these, elastomeric bearings, sliding bearings and hybrid systems are the most widely used. The introduction of flexible layer increases the deflection of the structure, thereby increasing the time period of the structure and decreasing the base shear. The Eco-friendly Scrap Tyre Rubber Pads (STRPs) provide several advantages such as low-cost, ease of handling and, simple shear stiffness adjustments, by changing the number of layers. They also provide environmental benefits, by recycling scrap tyres unlike other commercially available base isolators. In the present study, the properties of STRP specimen are evaluated experimentally. The STRPs are prepared by inserting layers of thin steel shims between rubber pads. Steel plates are provided at top and bottom and the entire assembly is subjected to vulcanization process. The tests conducted are (a) axial compression test and (b) horizontal shear test. Using the properties of STRPs obtained experimentally, a base-isolated G+ 8 Reinforced Concrete (RC) building is analysed on software ETABS. It is found that there is considerable reduction in the base shear and storey drift by installation of STRPs. Hence the innovative base isolators from Scrap Tyre Rubber Pads can be used for low rise structures as base isolators.