Interpolation-based semi-supervised learning for object detection

J Jeong, V Verma, M Hyun… - Proceedings of the …, 2021 - openaccess.thecvf.com
Proceedings of the IEEE/CVF Conference on Computer Vision and …, 2021openaccess.thecvf.com
Despite the data labeling cost for the object detection tasks being substantially more than
that of the classification tasks, semi-supervised learning methods for object detection have
not been studied much. In this paper, we propose an Interpolation-based Semi-supervised
learning method for object Detection (ISD), which considers and solves the problems
caused by applying conventional Interpolation Regularization (IR) directly to object
detection. We divide the output of the model into two types according to the objectness …
Abstract
Despite the data labeling cost for the object detection tasks being substantially more than that of the classification tasks, semi-supervised learning methods for object detection have not been studied much. In this paper, we propose an Interpolation-based Semi-supervised learning method for object Detection (ISD), which considers and solves the problems caused by applying conventional Interpolation Regularization (IR) directly to object detection. We divide the output of the model into two types according to the objectness scores of both original patches that are mixed in IR. Then, we apply a separate loss suitable for each type in an unsupervised manner. The proposed losses dramatically improve the performance of semi-supervised learning as well as supervised learning. In the supervised learning setting, our method improves the baseline methods by a significant margin. In the semi-supervised learning setting, our algorithm improves the performance on a benchmark dataset (PASCAL VOC and MSCOCO) in a benchmark architecture (SSD).
openaccess.thecvf.com
以上显示的是最相近的搜索结果。 查看全部搜索结果