Intrinsic functional connectivity variance and state‐specific under‐connectivity in autism

H Chen, JS Nomi, LQ Uddin, X Duan… - Human brain …, 2017 - Wiley Online Library
Human brain mapping, 2017Wiley Online Library
Autism spectrum disorder (ASD) is a neurodevelopmental condition associated with altered
brain connectivity. Previous neuroimaging research demonstrates inconsistent results,
particularly in studies of functional connectivity in ASD. Typically, these inconsistent findings
are results of studies using static measures of resting‐state functional connectivity. Recent
work has demonstrated that functional brain connections are dynamic, suggesting that static
connectivity metrics fail to capture nuanced time‐varying properties of functional …
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental condition associated with altered brain connectivity. Previous neuroimaging research demonstrates inconsistent results, particularly in studies of functional connectivity in ASD. Typically, these inconsistent findings are results of studies using static measures of resting‐state functional connectivity. Recent work has demonstrated that functional brain connections are dynamic, suggesting that static connectivity metrics fail to capture nuanced time‐varying properties of functional connections in the brain. Here we used a dynamic functional connectivity approach to examine the differences in the strength and variance of dynamic functional connections between individuals with ASD and healthy controls (HCs). The variance of dynamic functional connections was defined as the respective standard deviations of the dynamic functional connectivity strength across time. We utilized a large multicenter dataset of 507 male subjects (209 with ASD and 298 HC, from 6 to 36 years old) from the Autism Brain Imaging Data Exchange (ABIDE) to identify six distinct whole‐brain dynamic functional connectivity states. Analyses demonstrated greater variance of widespread long‐range dynamic functional connections in ASD (P < 0.05, NBS method) and weaker dynamic functional connections in ASD (P < 0.05, NBS method) within specific whole‐brain connectivity states. Hypervariant dynamic connections were also characterized by weaker connectivity strength in ASD compared with HC. Increased variance of dynamic functional connections was also related to ASD symptom severity (ADOS total score) (P < 0.05), and was most prominent in connections related to the medial superior frontal gyrus and temporal pole. These results demonstrate that greater intraindividual dynamic variance is a potential biomarker of ASD. Hum Brain Mapp 38:5740–5755, 2017. © 2017 Wiley Periodicals, Inc.
Wiley Online Library
以上显示的是最相近的搜索结果。 查看全部搜索结果

Google学术搜索按钮

example.edu/paper.pdf
搜索
获取 PDF 文件
引用
References