Investigating the adsorption potential of char derived from waste latex for methylene blue removal

T Nagarajan, K Vilosamy, G Raju, S Shanmugan… - Chemosphere, 2024 - Elsevier
T Nagarajan, K Vilosamy, G Raju, S Shanmugan, R Walvekar, S Rustagi, M Khalid
Chemosphere, 2024Elsevier
This study presents the adsorption of methylene blue (MB) dye using latex char derived from
pyrolysis of latex gloves. The adsorption process was investigated systematically using
Response Surface Methodology (RSM) with a Central Composite Design (CCD). The effects
of four key variables, namely pH, time, temperature, and adsorbent dosage, were studied
using a factorial design enriched with center points and axial points. Experimental data were
analyzed using a second-order polynomial regression model to construct a response …
Abstract
This study presents the adsorption of methylene blue (MB) dye using latex char derived from pyrolysis of latex gloves. The adsorption process was investigated systematically using Response Surface Methodology (RSM) with a Central Composite Design (CCD). The effects of four key variables, namely pH, time, temperature, and adsorbent dosage, were studied using a factorial design enriched with center points and axial points. Experimental data were analyzed using a second-order polynomial regression model to construct a response surface model, which elucidated the relationship between the variables and MB removal efficiency. The study found that the char obtained at 800 °C exhibited the highest adsorption capacity due to its increased carbonization, expanded surface area, and diverse pore structure. Analysis of Variance (ANOVA) confirmed the significance of the quadratic model, with remarkable agreement between predicted and experimental outcomes. Diagnostic plots validated the model's reliability, while 3D contour graphs illustrated the combined effects of variables on MB removal efficiency. Optimization using DoE software identified optimal conditions resulting in a 99% removal efficiency, which closely matched experimental results. Additionally, adsorption isotherms revealed that the Freundlich model best described the adsorption behavior, indicating heterogeneous surface adsorption with multilayer adsorption. This comprehensive study provides valuable insights into the adsorption process of MB dye using latex char, with implications for wastewater treatment and environmental remediation.
Elsevier
以上显示的是最相近的搜索结果。 查看全部搜索结果