Iron, nitrogen Co‐doped carbon spheres as low cost, scalable electrocatalysts for the oxygen reduction reaction

J Feng, R Cai, E Magliocca, H Luo… - Advanced Functional …, 2021 - Wiley Online Library
Advanced Functional Materials, 2021Wiley Online Library
Atomically dispersed transition metal‐nitrogen‐carbon catalysts are emerging as low‐cost
electrocatalysts for the oxygen reduction reaction in fuel cells. However, a cost‐effective and
scalable synthesis strategy for these catalysts is still required, as well as a greater
understanding of their mechanisms. Herein, iron, nitrogen co‐doped carbon spheres (Fe@
NCS) have been prepared via hydrothermal carbonization and high‐temperature post
carbonization. It is determined that FeN4 is the main form of iron existing in the obtained …
Abstract
Atomically dispersed transition metal‐nitrogen‐carbon catalysts are emerging as low‐cost electrocatalysts for the oxygen reduction reaction in fuel cells. However, a cost‐effective and scalable synthesis strategy for these catalysts is still required, as well as a greater understanding of their mechanisms. Herein, iron, nitrogen co‐doped carbon spheres (Fe@NCS) have been prepared via hydrothermal carbonization and high‐temperature post carbonization. It is determined that FeN4 is the main form of iron existing in the obtained Fe@NCS. Two different precursors containing Fe2+ and Fe3+ are compared. Both chemical and structural differences have been observed in catalysts starting from Fe2+ and Fe3+ precursors. Fe2+@NCS‐A (starting with Fe2+ precursor) shows better catalytic activity for the oxygen reduction reaction. This catalyst is studied in an anion exchange membrane fuel cell. The high open‐circuit voltage demonstrates the potential approach for developing high‐performance, low‐cost fuel cell catalysts.
Wiley Online Library
以上显示的是最相近的搜索结果。 查看全部搜索结果