Joint maximum likelihood estimation of microphone array parameters for a reverberant single source scenario

C Li, J Martinez, RC Hendriks - IEEE/ACM Transactions on …, 2023 - ieeexplore.ieee.org
C Li, J Martinez, RC Hendriks
IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2023ieeexplore.ieee.org
Estimation of the acoustic-scene related parameters such as relative transfer functions
(RTFs) from source to microphones, source power spectral densities (PSDs) and PSDs of
the late reverberation is essential and also challenging. Existing maximum likelihood
estimators typically consider only subsets of these parameters and use each time frame
separately. In this paper we explicitly focus on the single source scenario and first propose a
joint maximum likelihood estimator (MLE) to estimate all parameters jointly using a single …
Estimation of the acoustic-scene related parameters such as relative transfer functions (RTFs) from source to microphones, source power spectral densities (PSDs) and PSDs of the late reverberation is essential and also challenging. Existing maximum likelihood estimators typically consider only subsets of these parameters and use each time frame separately. In this paper we explicitly focus on the single source scenario and first propose a joint maximum likelihood estimator (MLE) to estimate all parameters jointly using a single time frame. Since the RTFs are typically invariant for a number of consecutive time frames we also propose a joint maximum likelihood estimator (MLE) using multiple time frames which has similar estimation performance compared to a recently proposed reference algorithm called simultaneously confirmatory factor analysis (SCFA), but at a much lower complexity. Moreover, we present experimental results which demonstrate that the estimation accuracy, together with the performance of noise reduction, speech quality and speech intelligibility, of our proposed joint MLE outperform those of existing MLE based approaches that use only a single time frame.
ieeexplore.ieee.org
以上显示的是最相近的搜索结果。 查看全部搜索结果