Knowledge graph based hard drive failure prediction

TR Chhetri, A Kurteva, JG Adigun, A Fensel - Sensors, 2022 - mdpi.com
Sensors, 2022mdpi.com
The hard drive is one of the important components of a computing system, and its failure can
lead to both system failure and data loss. Therefore, the reliability of a hard drive is very
important. Realising this importance, a number of studies have been conducted and many
are still ongoing to improve hard drive failure prediction. Most of those studies rely solely on
machine learning, and a few others on semantic technology. The studies based on machine
learning, despite promising results, lack context-awareness such as how failures are related …
The hard drive is one of the important components of a computing system, and its failure can lead to both system failure and data loss. Therefore, the reliability of a hard drive is very important. Realising this importance, a number of studies have been conducted and many are still ongoing to improve hard drive failure prediction. Most of those studies rely solely on machine learning, and a few others on semantic technology. The studies based on machine learning, despite promising results, lack context-awareness such as how failures are related or what other factors, such as humidity, influence the failure of hard drives. Semantic technology, on the other hand, by means of ontologies and knowledge graphs (KGs), is able to provide the context-awareness that machine learning-based studies lack. However, the studies based on semantic technology lack the advantages of machine learning, such as the ability to learn a pattern and make predictions based on learned patterns. Therefore, in this paper, leveraging the benefits of both machine learning (ML) and semantic technology, we present our study, knowledge graph-based hard drive failure prediction. The experimental results demonstrate that our proposed method achieves higher accuracy in comparison to the current state of the art.
MDPI
以上显示的是最相近的搜索结果。 查看全部搜索结果