In the present study, laser cutting of 7050 aluminum alloy sheets reinforced with Al2O3 and B4C particles are carried out. The cut geometry is examined using scanning electron microscope and the optical microscope. The lump parameter analysis technique is used to formulate and determine the kerf width size. The predictions for kerf width are compared with experimental data. The percentage kerf width size variation along the cut edges is determined and the influence of the laser power level and duty cycle of the laser pulses on the percentage kerf width size variation is examined. It is found that 7050 aluminum alloy reinforced with 20% Al2O3 composite results in relatively large kerf width size as compared to its counter parts that corresponding to 7050 aluminum alloy reinforced with 20% B4C composite. The kerf width size predicted agreed with the experimental data for both composites.