Learning continuous grasping function with a dexterous hand from human demonstrations

J Ye, J Wang, B Huang, Y Qin… - IEEE Robotics and …, 2023 - ieeexplore.ieee.org
IEEE Robotics and Automation Letters, 2023ieeexplore.ieee.org
We propose to learn to generate grasping motion for manipulation with a dexterous hand
using implicit functions. With continuous time inputs, the model can generate a continuous
and smooth grasping plan. We name the proposed model Continuous Grasping Function
(CGF). CGF is learned via generative modeling with a Conditional Variational Autoencoder
using 3D human demonstrations. We will first convert the large-scale human-object
interaction trajectories to robot demonstrations via motion retargeting, and then use these …
We propose to learn to generate grasping motion for manipulation with a dexterous hand using implicit functions. With continuous time inputs, the model can generate a continuous and smooth grasping plan. We name the proposed model Continuous Grasping Function (CGF). CGF is learned via generative modeling with a Conditional Variational Autoencoder using 3D human demonstrations. We will first convert the large-scale human-object interaction trajectories to robot demonstrations via motion retargeting, and then use these demonstrations to train CGF. During inference, we perform sampling with CGF to generate different grasping plans in the simulator and select the successful ones to transfer to the real robot. By training on diverse human data, our CGF allows generalization to manipulate multiple objects. Compared to previous planning algorithms, CGF is more efficient and achieves significant improvement on success rate when transferred to grasping with the real Allegro Hand.
ieeexplore.ieee.org
以上显示的是最相近的搜索结果。 查看全部搜索结果

Google学术搜索按钮

example.edu/paper.pdf
查找
获取 PDF 文件
引用
References