Lightweight metallic MgB2 mediates polysulfide redox and promises high-energy-density lithium-sulfur batteries

Q Pang, CY Kwok, D Kundu, X Liang, LF Nazar - Joule, 2019 - cell.com
Joule, 2019cell.com
The lithium-sulfur battery, despite possessing high theoretical specific energy, faces
practical challenges of polysulfide shuttling and low cell-level energy density and hence
requires significant functional advances over porous carbon for the cathode host. Here we
report the lightweight superconductor MgB 2—whose average mass/atom is comparable
with carbon—as a metallic sulfur host that fulfills both electron conduction and polysulfide
immobilization properties. We show by means of first-principles calculations that borides are …
Summary
The lithium-sulfur battery, despite possessing high theoretical specific energy, faces practical challenges of polysulfide shuttling and low cell-level energy density and hence requires significant functional advances over porous carbon for the cathode host. Here we report the lightweight superconductor MgB2—whose average mass/atom is comparable with carbon—as a metallic sulfur host that fulfills both electron conduction and polysulfide immobilization properties. We show by means of first-principles calculations that borides are unique in that both B- and Mg-terminated surfaces bond exclusively with the Sx2− anions (not Li+), and hence enhance electron transfer to the active Sx2− ions. The surface-mediated polysulfide redox behavior results in a much higher exchange current in comparison with MgO and carbon. By sandwiching MgB2 nanoparticles between graphene nanosheets to form a high-surface-area composite structure, we demonstrate sulfur cathodes that achieve stable cycling at a high sulfur loading of 9.3 mg cm−2.
cell.com