Magneto-active elastic shells with tunable buckling strength

D Yan, M Pezzulla, L Cruveiller, A Abbasi… - Nature …, 2021 - nature.com
D Yan, M Pezzulla, L Cruveiller, A Abbasi, PM Reis
Nature communications, 2021nature.com
Shell buckling is central in many biological structures and advanced functional materials,
even if, traditionally, this elastic instability has been regarded as a catastrophic phenomenon
to be avoided for engineering structures. Either way, predicting critical buckling conditions
remains a long-standing challenge. The subcritical nature of shell buckling imparts extreme
sensitivity to material and geometric imperfections. Consequently, measured critical loads
are inevitably lower than classic theoretical predictions. Here, we present a robust …
Abstract
Shell buckling is central in many biological structures and advanced functional materials, even if, traditionally, this elastic instability has been regarded as a catastrophic phenomenon to be avoided for engineering structures. Either way, predicting critical buckling conditions remains a long-standing challenge. The subcritical nature of shell buckling imparts extreme sensitivity to material and geometric imperfections. Consequently, measured critical loads are inevitably lower than classic theoretical predictions. Here, we present a robust mechanism to dynamically tune the buckling strength of shells, exploiting the coupling between mechanics and magnetism. Our experiments on pressurized spherical shells made of a hard-magnetic elastomer demonstrate the tunability of their buckling pressure via magnetic actuation. We develop a theoretical model for thin magnetic elastic shells, which rationalizes the underlying mechanism, in excellent agreement with experiments. A dimensionless magneto-elastic buckling number is recognized as the key governing parameter, combining the geometric, mechanical, and magnetic properties of the system.
nature.com
以上显示的是最相近的搜索结果。 查看全部搜索结果