We extend the formulation for perturbations of maximally symmetric black holes in higher dimensions developed by the present authors in a previous paper to a charged black hole background whose horizon is described by an Einstein manifold. For charged black holes, perturbations of electromagnetic fields are coupled to the vector and scalar modes of metric perturbations non-trivially. We show that by taking appropriate combinations of gauge-invariant variables for these perturbations, the perturbation equations for the Einstein-Maxwell system are reduced to two decoupled second-order wave equations describing the behaviour of the electromagnetic mode and the gravitational mode, for any value of the cosmological constant. These wave equations are transformed into Schrödinger-type ODEs through a Fourier transformation with respect to time. Using these equations, we investigate the stability of generalised black holes with charge. We also give explicit expressions for the source terms of these master equations with application to the emission problem of gravitational waves in mind.