Metabolic activity determines efficacy of macroautophagic clearance of pathological oligomeric α-synuclein

WH Yu, B Dorado, HY Figueroa, L Wang… - The American journal of …, 2009 - Elsevier
WH Yu, B Dorado, HY Figueroa, L Wang, E Planel, MR Cookson, LN Clark, KE Duff
The American journal of pathology, 2009Elsevier
Macroautophagy is an essential degradative pathway that can be induced to clear
aggregated proteins, such as those found in Parkinson's disease and dementia with Lewy
bodies, a form of Parkinsonism. This study found that both LC3-II and beclin were
significantly increased in brains from humans with Dementia with Lewy bodies and
transgenic mice overexpressing mutant α-synuclein, as compared with respective controls,
suggesting that macroautophagy is induced to remove α-syn, particularly oligomeric or …
Macroautophagy is an essential degradative pathway that can be induced to clear aggregated proteins, such as those found in Parkinson’s disease and dementia with Lewy bodies, a form of Parkinsonism. This study found that both LC3-II and beclin were significantly increased in brains from humans with Dementia with Lewy bodies and transgenic mice overexpressing mutant α-synuclein, as compared with respective controls, suggesting that macroautophagy is induced to remove α-syn, particularly oligomeric or mutant forms. Aged mutant animals had higher autophagy biomarker levels relative to younger animals, suggesting that with aging, autophagy is less efficient and requires more stimulation to achieve the same outcome. Disruption of autophagy by RNA interference significantly increased α-syn oligomer accumulation in vitro, confirming the significance of autophagy in α-syn clearance. Finally, rotenone-induced α-syn aggregates were cleared following rapamycin stimulation of autophagy. Chronic rotenone exposure and commensurate reduction of metabolic activity limited the efficacy of rapamycin to promote autophagy, suggesting that cellular metabolism is critical for determining autophagic activity. Cumulatively, these findings support the concept that neuronal autophagy is essential for protein homeostasis and, in our system, reduction of autophagy increased the accumulation of potentially pathogenic α-synuclein oligomers. Aging and metabolic state were identified as important determinants of autophagic activity. This study provides therapeutic and pathological implications for both synucleinopathy and Parkinson’s disease, identifying conditions in which autophagy may be insufficient to degrade α-syn aggregates.
Elsevier
以上显示的是最相近的搜索结果。 查看全部搜索结果