Minimization of decision tree depth for multi-label decision tables

M Azad, M Moshkov - 2014 IEEE International Conference on …, 2014 - ieeexplore.ieee.org
2014 IEEE International Conference on Granular Computing (GrC), 2014ieeexplore.ieee.org
In this paper, we consider multi-label decision tables that have a set of decisions attached to
each row. Our goal is to find one decision from the set of decisions for each row by using
decision tree as our tool. Considering our target to minimize the depth of the decision tree,
we devised various kinds of greedy algorithms as well as dynamic programming algorithm.
When we compare with the optimal result obtained from dynamic programming algorithm,
we found some greedy algorithms produces results which are close to the optimal result for …
In this paper, we consider multi-label decision tables that have a set of decisions attached to each row. Our goal is to find one decision from the set of decisions for each row by using decision tree as our tool. Considering our target to minimize the depth of the decision tree, we devised various kinds of greedy algorithms as well as dynamic programming algorithm. When we compare with the optimal result obtained from dynamic programming algorithm, we found some greedy algorithms produces results which are close to the optimal result for the minimization of depth of decision trees.
ieeexplore.ieee.org
以上显示的是最相近的搜索结果。 查看全部搜索结果