Abstract
Greulich and Pyle (GP) is one of the most common methods to determine bone age from hand radiographs. In recent years, new methods were developed to increase the efficiency in bone age analysis like the shorthand bone age (SBA) and automated artificial intelligence algorithms.
Objective
The aim of this study is to evaluate the accuracy and reliability of these two methods and examine if the reduction in analysis time compromises their efficacy.
Methods
Two hundred thirteen males and 213 females had their bone age determined by two separate raters using the SBA and GP methods. Three weeks later, the two raters repeated the analysis of the radiographs. The raters timed themselves using an online stopwatch. De-identified radiographs were securely uploaded to an automated algorithm developed by a group of radiologists in Toronto. The gold standard was determined to be the radiology report attached to each radiograph, written by experienced radiologists using GP.
Results
Intraclass correlation between each method and the gold standard fell within the range of 0.8–0.9, highlighting significant agreement. Most of the comparisons showed a statistically significant difference between the new methods and the gold standard; however, it may not be clinically significant as it ranges between 0.25 and 0.5 years. A bone age is considered clinically abnormal if it falls outside 2 standard deviations of the chronological age; standard deviations are calculated and provided in GP atlas.
Conclusion
The shorthand bone age method and the automated algorithm produced values that are in agreement with the gold standard while reducing analysis time.