The present work is aimed at developing a titania-based mesoporous film with catalytic properties toward organophosphate pesticides by combining two different approaches: the molecular imprinting and the self-assembly with a supramolecular template. The mesoporosity of the material has been obtained by using a tri-block copolymer (Pluronic F127) as a micellar template while the molecular imprinted cavities have been templated by a complex between La3+ and bis-4-nitro-phenyl-phosphate. The template removal allowed opening, in one step, both the mesopores and the imprinted cavities with a simultaneous estimation of the active sites. The catalytic activity of the molecularly imprinted and not imprinted films toward the pesticide Paraoxon® has been evaluated by means of UV-Vis spectroscopy titration of the 4-nitro-phenolate released by the Paraoxon® hydrolysis. The analysis of the initial rates of molecularly imprinted and not imprinted films has shown that the presence of a very low number of molecular cavities improves the catalytic properties of the imprinted film when compared to the not imprinted films and the background hydrolysis.
The Royal Society of Chemistry