Narrate: A normal assisted free-view portrait stylizer

Y Wang, T Xu, Y Wu, M Li, W Chen, L Xu… - arXiv preprint arXiv …, 2022 - arxiv.org
Y Wang, T Xu, Y Wu, M Li, W Chen, L Xu, J Yu
arXiv preprint arXiv:2207.00974, 2022arxiv.org
In this work, we propose NARRATE, a novel pipeline that enables simultaneously editing
portrait lighting and perspective in a photorealistic manner. As a hybrid neural-physical face
model, NARRATE leverages complementary benefits of geometry-aware generative
approaches and normal-assisted physical face models. In a nutshell, NARRATE first inverts
the input portrait to a coarse geometry and employs neural rendering to generate images
resembling the input, as well as producing convincing pose changes. However, inversion …
In this work, we propose NARRATE, a novel pipeline that enables simultaneously editing portrait lighting and perspective in a photorealistic manner. As a hybrid neural-physical face model, NARRATE leverages complementary benefits of geometry-aware generative approaches and normal-assisted physical face models. In a nutshell, NARRATE first inverts the input portrait to a coarse geometry and employs neural rendering to generate images resembling the input, as well as producing convincing pose changes. However, inversion step introduces mismatch, bringing low-quality images with less facial details. As such, we further estimate portrait normal to enhance the coarse geometry, creating a high-fidelity physical face model. In particular, we fuse the neural and physical renderings to compensate for the imperfect inversion, resulting in both realistic and view-consistent novel perspective images. In relighting stage, previous works focus on single view portrait relighting but ignoring consistency between different perspectives as well, leading unstable and inconsistent lighting effects for view changes. We extend Total Relighting to fix this problem by unifying its multi-view input normal maps with the physical face model. NARRATE conducts relighting with consistent normal maps, imposing cross-view constraints and exhibiting stable and coherent illumination effects. We experimentally demonstrate that NARRATE achieves more photorealistic, reliable results over prior works. We further bridge NARRATE with animation and style transfer tools, supporting pose change, light change, facial animation, and style transfer, either separately or in combination, all at a photographic quality. We showcase vivid free-view facial animations as well as 3D-aware relightable stylization, which help facilitate various AR/VR applications like virtual cinematography, 3D video conferencing, and post-production.
arxiv.org
以上显示的是最相近的搜索结果。 查看全部搜索结果