such that A ∩ K= DA∩ K= D. The ring of integer-valued polynomials on A with coefficients in
K is Int _K (A)={f ∈ KX ∣ f (A) ⊆ A\} I nt K (A)= f∈ KX∣ f (A)⊆ A, which generalizes the
classic ring Int (D)={f ∈ KX ∣ f (D) ⊆ D\} I nt (D)= f∈ KX∣ f (D)⊆ D of integer-valued
polynomials on D. The condition on A ∩ KA∩ K implies that DX ⊆ Int _K (A) ⊆ Int (D) DX⊆
I nt K (A)⊆ I nt (D), and we say that Int _K (A) I nt K (A) is nontrivial if Int _K (A) ≠ DXI nt K …