[HTML][HTML] Oligo (ethylene glycol) methyl ether methacrylate based hydrogel with intrinsic antibacterial activity against Pseudomonas aeruginosa as a model of a major …

A Çetinkaya, AK Kissmann, M Lipinska… - European Polymer …, 2024 - Elsevier
A Çetinkaya, AK Kissmann, M Lipinska, M Trzaskowska, J Duniec, H Katariya, M Slouf…
European Polymer Journal, 2024Elsevier
Wound dressings represent the first important defense line against potentially life-
threatening infections. Successful materials should unify efficiency, simplicity of production
with the ease of application. Cationic polymers based on quaternary ammonium salt
moieties along the polymer chain promise high efficacy against growth of relevant
pathogens including drug-resistant strains. We present a novel and easy-to-handle wound
dressing material based on the well-defined copolymers of oligo (ethylene glycol) methyl …
Abstract
Wound dressings represent the first important defense line against potentially life-threatening infections. Successful materials should unify efficiency, simplicity of production with the ease of application. Cationic polymers based on quaternary ammonium salt moieties along the polymer chain promise high efficacy against growth of relevant pathogens including drug-resistant strains. We present a novel and easy-to-handle wound dressing material based on the well-defined copolymers of oligo(ethylene glycol) methyl ether methacrylate (OEGMA) and 2-(dimethylamino)ethyl methacrylate (DMAEMA), using quaternization with 1,6-dibromohexane for hydrogel formation. The material obtained from this robust approach was perfectly biocompatible with human dermal fibroblasts and revealed an auspicious degree of intrinsic antibacterial activity against P. aeruginosa as a model pathogen for hospital-acquired infections. Formation of bacterial biofilms was prevented in early- and late-stages and even planktonic cells were killed upon gel contact. The rheological properties of the hydrogel materials were comprehensively characterized in both dry and swollen states. Excellent biological performance and appropriate viscoelastic properties qualify the hydrogels from our production approach as truly promising novel wound dressing materials with long-lasting and contact-active bactericidal activities. We believe that this charmingly simple procedure and the mechanical properties of the hydrogel may open new avenues towards cost-effective next-generation first-line wound-care materials.
Elsevier
以上显示的是最相近的搜索结果。 查看全部搜索结果