Age related macular degeneration (AMD) is a complex multifactorial disease caused by the interplay of age and genetic and environmental risk factors. A common feature observed in early and both forms of late AMD is the breakdown of the physiologically immunosuppressive subretinal environment and the protracted accumulation of mononuclear phagocytes (MP). We here discuss the origin and nature of subretinal MPs, the mechanisms that lead to their accumulation, the inflammatory mediators they produce as well as the consequences of their chronic presence on photoreceptors, retinal pigment epithelium and choroid. Recent advances highlight how both genetic and environmental risk factors directly promote subretinal inflammation and tip the balance from a beneficial inflammation that helps control debris accumulation to detrimental chronic inflammation and destructive late AMD. Finally, we discuss how changes in life style or pharmacological intervention can help to break the vicious cycle of inflammation and degeneration, restore the immunosuppressive properties of the subretinal space, and reestablish homeostasis.