Streaky boundary layers generated by an array of miniature vortex generators (MVGs) mounted on a flat plate have recently shown to have a stabilizing effect on both two- and three-dimensional disturbances. An experimental study on the effect of the geometrical parameters of MVGs on the generated streamwise streaks in the flat plate boundary layer is carried out, and the corresponding stabilizing effect on Tollmien–Schlichting (TS) wave disturbances is quantified. The new experimental configurations have led to an improved empirical scaling law, which includes additional geometrical parameters of the MVGs compared to the previously reported relation. It is found that the MVG configuration can be optimized with respect to the attenuation of disturbances. In addition, the streamwise location of branch I of the neutral stability curve, with regard to the location of the MVG array, is found to be correlated with the initial receptivity of TS waves on the MVG array and the attenuation of the TS wave amplitude in the unstable region.