The capabilities and limitations of the conventional many-particle shell model and modern potential cluster models are discussed. New revaluated and more accurate calculations of one-nucleon spectroscopic characteristics of the light nuclei of 1p shell are presented. In many-particle shell model for nuclei with A = 7, 9, 11, 13, and 15 nucleon partial widths of highly excited states with the isotopic spin T = 3/2 were calculated both for “allowed” and “forbidden” transitions. One-nucleon spectroscopic factors were calculated in threebody multicluster models of 6Li{αnp}, 8Li{αtn}, and 9Be{ααn} nuclei. For isobar-analogue nuclei 7Li and 7Be, the spectroscopic proton S p and neutron S n factors for transitions to the ground and excited states of corresponding residue nuclei of the triplet 6Li-6He-6Be were calculated in the framework of binary potential αtand ατ models. Integral, differential and polarization characteristics of photonuclear processes 7Li(γ, n 0)6Li, 6He(p, γ0 + 1)7Li, 7Li(γ, p 0)6He, and 9Be(γ, p 0 + 1)8Li were calculated in this approach.