The term ‘Wireless’ is a cordless technology where the nodes interact or exchange information with the sink node without wired intervention to exchange or transmit any information successfully. Characteristics of the present wireless sensor networks are applied to diverse technological furtherance in minimum power communications and very large-scale integration to sustained functionalities of sensing. Tremendous number of incentive observation and algometry of data are amassed from sensors in Wireless Sensor Networks (WSNs) for the Internet of Things (IoT) applications such as environmental monitoring. However, continuous dissemination of the sensed data postulates eminent energy imbibing. Data reduction duress the sensor nodes to surcease transmitting the data when it is diffident about freshen up. One way to reduce this kind of energy imbibing is to minimize the amount of data exchanged across the sensors, therefore the research work aims to increase the communication and spatial prediction between the sensor nodes and the sink nodes.