Oxidative stress assessment in breath-hold diving

S Mrakic-Sposta, A Vezzoli, A Rizzato… - European journal of …, 2019 - Springer
European journal of applied physiology, 2019Springer
Purpose Breath-hold diving results in significant changes in blood gases' levels.
Challenging variations in oxygen partial pressures may induce reactive oxygen species
(ROS) production that exacerbate oxidative stress and, consequently, affect endothelial
function. The aim of this study was to investigate the effects of breath-hold diving on
oxidative stress damage, assessing ROS production. Nitric oxide metabolites, inducible
nitric oxide synthase (iNOS), aminothiols, and renal function were evaluated too as markers …
Purpose
Breath-hold diving results in significant changes in blood gases’ levels. Challenging variations in oxygen partial pressures may induce reactive oxygen species (ROS) production that exacerbate oxidative stress and, consequently, affect endothelial function. The aim of this study was to investigate the effects of breath-hold diving on oxidative stress damage, assessing ROS production. Nitric oxide metabolites, inducible nitric oxide synthase (iNOS), aminothiols, and renal function were evaluated too as markers of redox status and renal damage.
Methods
ROS production was assessed with electron paramagnetic resonance. Oxidative status values were measured at pre- and post-40 m dive in a deep swimming pool (Y-40) from six divers (mean age 46.6 ± 9.3 years; height 176 ± 4 cm; BMI 25 ± 2.9 kg/m2).
Results
Significant (p < 0.05) increases at post-dive of ROS production rate (0.158 ± 0.003 vs 0.195 ± 0.006 μmol min−1), lipid peroxidation (8-isoprostane: 375.67 ± 195.62 vs 420.49 ± 232.31 pg mg−1 creatinine), nitrate (27.91 ± 19.71 vs 30.80 ± 20.44 μM), iNOS (31.30 ± 4.52 vs 35.68 ± 6.72 IU mL−1) and neopterin concentration (96.20 ± 40.41 vs 118.76 ± 27.84 μmol mol−1 creatinine) were recorded. Conversely, the antioxidant capacity significantly decreased (3.423 ± 0.089 vs 3.015 ± 0.284 mM) after immersion.
Conclusion
Overproduction of ROS and consequent oxidative damage to lipids of membrane and antioxidant capacity decreasing reflect also a hypoxic condition, which in the breath-hold diving typically occurs in the last few meters below the surface. iNOS produces NO in large quantities under the examined extreme conditions. Neopterin and creatinine concentration level increased, suggesting an “impairment of renal function” as a likely physiological response to PaO2 variations during dive activity.
Springer
以上显示的是最相近的搜索结果。 查看全部搜索结果

Google学术搜索按钮

example.edu/paper.pdf
搜索
获取 PDF 文件
引用
References