Amyotrophic lateral sclerosis (ALS) is a disease leading to progressive motor degeneration and ultimately death. It is a complex disease that can take a significantly long time to be diagnosed, as other similar pathological conditions must be ruled out for a definite diagnosis of ALS. Noninvasive imaging of ALS has shed light on disease pathology and altered biochemistry in the ALS brain. Other than magnetic resonance imaging (MRI), two types of functional imaging, positron emission tomography (PET) and single photon emission computed tomography (SPECT), have provided valuable data about what happens in the brain of ALS patients compared to healthy controls. PET imaging has revealed a specific pattern of brain metabolism through [18F]FDG, while other radiotracers have uncovered neuroinflammation, changes in neuronal density, and protein aggregation. SPECT imaging has shown a general decrease in regional cerebral blood flow (rCBF) in ALS patients. This educational review summarizes the current state of ALS imaging with various PET and SPECT radiopharmaceuticals to better understand the pathophysiology of ALS.