PPARα is essential for retinal lipid metabolism and neuronal survival

EA Pearsall, R Cheng, K Zhou, Y Takahashi… - BMC biology, 2017 - Springer
EA Pearsall, R Cheng, K Zhou, Y Takahashi, HG Matlock, SS Vadvalkar, Y Shin, TW Fredrick…
BMC biology, 2017Springer
Background Peroxisome proliferator activated receptor-alpha (PPARα) is a ubiquitously
expressed nuclear receptor. The role of endogenous PPARα in retinal neuronal
homeostasis is unknown. Retinal photoreceptors are the highest energy-consuming cells in
the body, requiring abundant energy substrates. PPARα is a known regulator of lipid
metabolism, and we hypothesized that it may regulate lipid use for oxidative phosphorylation
in energetically demanding retinal neurons. Results We found that endogenous PPARα is …
Background
Peroxisome proliferator activated receptor-alpha (PPARα) is a ubiquitously expressed nuclear receptor. The role of endogenous PPARα in retinal neuronal homeostasis is unknown. Retinal photoreceptors are the highest energy-consuming cells in the body, requiring abundant energy substrates. PPARα is a known regulator of lipid metabolism, and we hypothesized that it may regulate lipid use for oxidative phosphorylation in energetically demanding retinal neurons.
Results
We found that endogenous PPARα is essential for the maintenance and survival of retinal neurons, with Pparα -/- mice developing retinal degeneration first detected at 8 weeks of age. Using extracellular flux analysis, we identified that PPARα mediates retinal utilization of lipids as an energy substrate, and that ablation of PPARα ultimately results in retinal bioenergetic deficiency and neurodegeneration. This may be due to PPARα regulation of lipid transporters, which facilitate the internalization of fatty acids into cell membranes and mitochondria for oxidation and ATP production.
Conclusion
We identify an endogenous role for PPARα in retinal neuronal survival and lipid metabolism, and furthermore underscore the importance of fatty acid oxidation in photoreceptor survival. We also suggest PPARα as a putative therapeutic target for age-related macular degeneration, which may be due in part to decreased mitochondrial efficiency and subsequent energetic deficits.
Springer
以上显示的是最相近的搜索结果。 查看全部搜索结果