STUDY QUESTION
Does sperm DNA damage affect early embryonic development?
SUMMARY ANSWER
Increased sperm DNA damage adversely affects embryo quality starting at Day 2 of early embryonic development and continuing after embryo transfer, resulting in reduced implantation rates and pregnancy outcomes.
WHAT IS KNOWN ALREADY
Abnormalities in the sperm DNA in the form of single and double strand breaks can be assessed by an alkaline Comet assay. Some prior studies have shown a strong paternal effect of sperm DNA damage on IVF outcome, including reduced fertilization, reduced embryo quality and cleavage rates, reduced numbers of embryos developing into blastocysts, increased percentage of embryos undergoing developmental arrest, and reduced implantation and pregnancy rates.
STUDY DESIGN, SIZE, DURATION
A cross-sectional study of 215 men from infertile couples undergoing assisted reproduction techniques at the University of Utah Center for Reproductive Medicine.
PARTICIPANTS/MATERIALS, SETTING, METHODS
Sperm from men undergoing ART were analyzed for DNA damage using an alkaline Comet assay and classified into three groups: ‘low damage’ (0–30%), ‘intermediate damage’ (31–70%) and ‘high damage’ (71–100%). The cause of couples' infertility was categorized into one of the three types (male, female or unexplained). Each embryo was categorized as ‘good’, ‘fair’ or ‘poor’ quality, based on the number and grade of blastomeres. The influence of sperm DNA damage on early embryonic development was observed and classified into four stages: peri-fertilization effect (fertilization rate), early paternal effect (embryonic days 1–2), late paternal effect (embryonic days 3–5) and implantation stage effect.
MAIN RESULTS AND THE ROLE OF CHANCE
The paternal effect of sperm DNA damage was observed at each stage of early embryonic development. The peri-fertilization effect was higher in oocytes from patients with female infertility (20.85%) compared with male (8.22%; P < 0.001) and unexplained (7.30%; P < 0.001) infertility factors. In both the early and late paternal effect stages, the low DNA damage group had a higher percentage of good quality embryos (P < 0.05) and lower percentage of poor quality embryos (P < 0.05) compared with the high DNA damage group. Implantation was lower in the high DNA damage (33.33%) compared with intermediate DNA damage (55.26%; P < 0.001) and low DNA damage (65.00%; P < 0.001) groups. The implantation rate was higher following blastocyst transfer (58.33%), when compared with early stage blastocyst (53.85%; P = 0.554) and cavitating morula transfers (34.40%; P < 0.001). Implantation was higher when the female partner age was ≤35 years when compared with >35 year age group (52.75 versus 35.44%; P = 0.008).
LIMITATIONS, REASONS FOR CAUTION
A potential limitation of this study is that it is cross-sectional. Generally in such studies more than one variable could affect the outcome. Analyzing sperm is one part of the equation but a number of environmental and female factors also have the potential to influence embryo development and implantation. Furthermore, the selection of morphologically normal and physiologically motile sperm may result in isolation of sperm with reduced DNA damage. Therefore, selecting the best available sperm for ICSI may lead to experimental bias, as the selected sperm do not represent the overall sperm population in which the DNA damage is …