Magnetic orderings, ie, the spontaneous alignment of electron spins below a critical temperature, have been playing key roles in modern science and technologies for both the wide applications of magnetic recording for information storage and the vibrant potential of solid state electronic spin devices (also known as spintronics) for logic operations. In the past decades, thanks to the development of thin film technologies, magnetic thin films via sputtering or epitaxial growth have made the spintronic devices possible at the industrial scale. Yet thinner materials at lower costs with more versatile functionalities are highly desirable for advancing future spintronics. Recently, van der Waals magnetic materials, a family of magnets that can in principle be exfoliated down to the monolayer limit, seem to have brought tremendous opportunities: new generation van der Waals spintronic devices can be seamlessly assembled with possible applications such as optoelectronics, flexible electronics, and etc. Moreover, those exfoliated spintronic devices can potentially be compatible with the famed metal-oxide field effect transistor architectures, allowing the harness of spin performances through the knob of an electrostatic field.