Positioning hydrogen atoms by optimizing hydrogen‐bond networks in protein structures

RWW Hooft, C Sander, G Vriend - Proteins: Structure, Function …, 1996 - Wiley Online Library
Proteins: Structure, Function, and Bioinformatics, 1996Wiley Online Library
A method is presented that positions polar hydrogen atoms in protein structures by
optimizing the total hydrogen bond energy. For this goal, an empirical hydrogen bond force
field was derived from small molecule crystal structures. Bifurcated hydrogen bonds are
taken into account. The procedure also predicts ionization states of His, Asp, and Glu
residues. During optimization, sidechain conformations of His, Gln, and Asn residues are
allowed to change their last χ angle by 180° to compensate for crystallographic …
Abstract
A method is presented that positions polar hydrogen atoms in protein structures by optimizing the total hydrogen bond energy. For this goal, an empirical hydrogen bond force field was derived from small molecule crystal structures. Bifurcated hydrogen bonds are taken into account. The procedure also predicts ionization states of His, Asp, and Glu residues. During optimization, sidechain conformations of His, Gln, and Asn residues are allowed to change their last χ angle by 180° to compensate for crystallographic misassignments. Crystal structure symmetry is taken into account where appropriate. The results can have significant implications for molecular dynamics simulations, protein engineering, and docking studies. The largest impact, however, is in protein structure verification: over 85% of protein structures tested can be improved by using our procedure. Proteins 26:363–376 © 1996 Wiley‐Liss, Inc.
Wiley Online Library
以上显示的是最相近的搜索结果。 查看全部搜索结果