Objective: The aim of the present article is to conduct an integrated assessment in order to explore whether CCS could be a viable technological option for significantly reducing future CO2 emissions in China. Methods: In this paper, an integrated approach covering five assessment dimensions is chosen. Each dimension is investigated using specific methods (graphical abstract). Results: The most crucial precondition that must be met is a reliable storage capacity assessment based on site-specific geological data. Our projection of different trends of coal-based power plant capacities up to 2050 ranges between 34 and 221 Gt of CO2 that may be captured from coal-fired power plants to be built by 2050. If very optimistic assumptions about the country’s CO2 storage potential are applied, 192 Gt of CO2 could theoretically be stored as a result of matching these sources with suitable sinks. If a cautious approach is taken, this figure falls to 29 Gt of CO2. In practice, this potential will decrease further with the impact of technical, legal, economic and social acceptance factors. Further constraints may be the delayed commercial availability of CCS in China; a significant barrier to achieving the economic viability of CCS due to a currently non-existing nation-wide CO2 pricing scheme that generates a sufficiently strong price signal; an expected life-cycle reduction rate of the power plant’s greenhouse gas emissions of 59–60%; and an increase in most other negative environmental and social impacts. Conclusion and practice implications: Most experts expect a striking dominance of coal-fired power generation in the country’s electricity sector, even if the recent trend towards a flattened deployment of coal capacity and reduced annual growth rates of coal-fired generation proves to be true in the future. In order to reduce fossil fuel-related CO2 emissions to a level that would be consistent with the long-term climate protection target of the international community to which China is increasingly committing itself, this option may require the introduction of CCS. However, a precondition for opting for CCS would be finding robust solutions to the constraints highlighted in this article. Furthermore, a comparison with other low-carbon technology options may be useful in drawing completely valid conclusions on the economic, ecological and social viability of CCS in a low-carbon policy environment. The assessment dimensions should be integrated into macro-economic optimisation models by combining qualitative with quantitative modelling, and the flexible operation of CCS power plants should be analysed in view of a possible role of CCS for balancing fluctuating renewable energies.