Raman and IR spectroscopy of chemically processed single-walled carbon nanotubes

UJ Kim, CA Furtado, X Liu, G Chen… - Journal of the American …, 2005 - ACS Publications
UJ Kim, CA Furtado, X Liu, G Chen, PC Eklund
Journal of the American Chemical Society, 2005ACS Publications
IR and Raman spectroscopy has been used to study the evolution of the vibrational
spectrum of bundled single-walled carbon nanotubes (SWNTs) during the purification
process needed to remove metal catalyst and amorphous carbon present in arc-derived
SWNT soot. We have carried out a systematic study to define the different outcomes
stemming from the purification protocol (eg, DO, DO/HCl, DO/HNO3, H2O2, H2O2/HCl),
where dry oxidation (DO) or refluxing in H2O2 was used in a first purification step to remove …
IR and Raman spectroscopy has been used to study the evolution of the vibrational spectrum of bundled single-walled carbon nanotubes (SWNTs) during the purification process needed to remove metal catalyst and amorphous carbon present in arc-derived SWNT soot. We have carried out a systematic study to define the different outcomes stemming from the purification protocol (e.g., DO, DO/HCl, DO/HNO3, H2O2, H2O2/HCl), where dry oxidation (DO) or refluxing in H2O2 was used in a first purification step to remove amorphous carbon. The second step involves acid reflux (HCl or HNO3) to remove the residual growth catalyst (Ni−Y). During strong chemical processing, it appears possible to create additional defects where carbon atoms are eliminated, the ring structure is now open, localized CC bonds are created, and O-containing groups can be added to this defect to stabilize the structure. Evolution of SWNT skeletal disorder obtained via chemical processing was studied by Raman scattering. Higher intensity ratios of R- and G-band (IR/IG) are more typically found in SWNT materials with low D-band intensity and narrow G-band components. Using IR transmission through thin films of nanotubes, we can resolve the structure due to functional groups that were present in the starting material or added through chemical processing. After high-temperature vacuum annealing of the purified material at 1100 °C, IR spectroscopy shows that most of the added functional groups can be removed and that the structure that remains is assigned to the one- and two-phonon modes of SWNTs.
ACS Publications
以上显示的是最相近的搜索结果。 查看全部搜索结果