Blending is an important way to obtain materials based on intrinsically conductive polymers and conventional plastics and rubber materials. Much research has been carried out to determine the best performance of materials be used for electrostatic dissipation and electromagnetic interference shielding. Mechanical mixing, codissolution, and in situ polymerization have been used to prepare these materials. The method used depends on the host polymer and its thermal stability and acid attack resistance. Homogeneity and miscibility are properties that should be controlled during blend preparation. In this study, we prepared a conductive thermoplastic elastomer material based on butadiene–styrene copolymer (SBR) and polyaniline (PANI) doped with dodecylbenzene sulfonic acid (DBSA) and poly(styrene sulfonic acid) (PSS). PSS also acted as compatibilizer between PANI and SBR. PANI was doped by reactive processing with DBSA and PSS to produce the conductive complex PANI–DBSA–PSS. This complex was mixed with 90, 70, and 50% (w/w) SBR in a counterrotatory internal mixer. Conductivity tests, swelling studies, thermal analysis, and mechanical property and reflectivity testing were done, and the results show a strong dependence on PANI concentration and the ratio between PANI–DBSA and PSS. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 681–685, 2006