Clouds have a critical role in many studies such as weather- and climate-related investigations. However, they represent a source of errors in many applications, and the presence of cloud contamination can hinder the use of satellite data. In addition, sending cloudy data to ground stations can result in an inefficient utilization of the communication bandwidth. This requires satellite on-board cloud detection capability to mask out cloudy pixels from further processing. Remote sensing satellite missions have always required smaller size, lower cost, more flexibility, and higher computational power. Reconfigurable Computers (RCs) combine the flexibility of traditional microprocessors with the power of Field Programmable Gate Arrays (FPGAs). Therefore, RCs are a promising candidate for on-board preprocessing. This paper presents the design and implementation of an RC-based real-time cloud detection system. We investigate the potential of using RCs for on-board preprocessing by prototyping the Landsat 7 ETM+ ACCA algorithm on one of the state-of-the-art reconfigurable platforms, SRC-6. It will be shown that our work provides higher detection accuracy and over one order of magnitude improvement in performance when compared to previously reported investigations.