Reframing hydrology education to solve coupled human and environmental problems

EG King, FC O'Donnell… - Hydrology and Earth …, 2012 - hess.copernicus.org
Hydrology and Earth System Sciences, 2012hess.copernicus.org
The impact of human activity on the biophysical world raises myriad challenges for
sustaining Earth system processes, ecosystem services, and human societies. To engage in
meaningful problem-solving in the hydrosphere, this necessitates an approach that
recognizes the coupled nature of human and biophysical systems. We argue that, in order to
produce the next generation of problem-solvers, hydrology education should ensure that
students develop an appreciation and working familiarity in the context of coupled human …
The impact of human activity on the biophysical world raises myriad challenges for sustaining Earth system processes, ecosystem services, and human societies. To engage in meaningful problem-solving in the hydrosphere, this necessitates an approach that recognizes the coupled nature of human and biophysical systems. We argue that, in order to produce the next generation of problem-solvers, hydrology education should ensure that students develop an appreciation and working familiarity in the context of coupled human-environmental systems. We illustrate how undergraduate-level hydrology assignments can extend beyond rote computations or basic throughput scenarios to include consideration of the dynamic interactions with social and other biophysical dimensions of complex adaptive systems. Such an educational approach not only builds appropriate breadth of dynamic understanding, but can also empower students toward assuming influential and effective roles in solving sustainability challenges.
hess.copernicus.org
以上显示的是最相近的搜索结果。 查看全部搜索结果