Renewable hydrogen from glycerol steam reforming using Co–Ni–MgO based SBA-15 nanocatalysts

S Al-Salihi, R Abrokwah, W Dade, V Deshmane… - international journal of …, 2020 - Elsevier
international journal of hydrogen energy, 2020Elsevier
Steam reforming of glycerol was carried out using Si-based mesoporous SBA-15 catalysts.
Different mesoporous catalysts-Co-SBA-15, Ni-SBA-15, Co–MgO-SBA-15, Ni–MgO-SBA-15,
and Co–Ni-SBA-15 were prepared using a one-pot hydrothermal method. An incipient
wetness impregnation method was used only for the bimetallic Co–Ni-SBA-15 catalyst
(catalyst designated as Co–Ni-SBA-15-IMPG) to compare its activity to that prepared by the
one-pot method. The catalysts were characterized using XRD, TPR, TEM, TGA-DSC, ICP …
Abstract
Steam reforming of glycerol was carried out using Si-based mesoporous SBA-15 catalysts. Different mesoporous catalysts- Co-SBA-15, Ni-SBA-15, Co–MgO-SBA-15, Ni–MgO-SBA-15, and Co–Ni-SBA-15 were prepared using a one-pot hydrothermal method. An incipient wetness impregnation method was used only for the bimetallic Co–Ni-SBA-15 catalyst (catalyst designated as Co–Ni-SBA-15-IMPG) to compare its activity to that prepared by the one-pot method. The catalysts were characterized using XRD, TPR, TEM, TGA-DSC, ICP-OES and N2 adsorption-desorption analytical techniques. A high surface area in the range of 540–750 m2/g was observed depending on the catalyst composition. The glycerol steam reforming (GSR) activity of the catalysts was studied in the reaction temperature range of 450 °C–700 °C for hydrogen production. Results from the GSR studies for continuous 40 h showed that both Co–Ni-SBA-15-IMPG (impregnation) and Co–Ni-SBA-15 (one-pot) were resistant to deactivation, and both yielded 100% glycerol conversion for the entire 40 h. 10%Co–5%Ni-SBA-15 and 10%Co–5%Ni-SBA-15-IMPG produced (70–78) % and (60–78) % H2 selectivity, respectively. Addition of MgO to Co-SBA-15 and Ni-SBA-15 increased the activity and stability of the catalysts. The catalyst stability performance followed the trend 10%Co–5%Ni > 10%Co–5%MgO >10%Co–5%Ni-IMPG. > 15%Co > 10%Ni–5%MgO >15%Ni-SBA-15. Thermal analyses of the spent catalyst showed a substantial amount of coke deposition which could be the major factor responsible for catalysts deactivation. Bimetallic catalysts prepared by one-pot method (10%Co–5%Ni-SBA-15) and incipient wetness impregnation (10%Co–5%Ni-SBA-15-IMPG) exhibited remarkable GSR activity compared to their monometallic counterparts. The GSR activity was observed in the order: 10%Co–5%Ni-IMPG ≥ 10%Co–5%Ni > 10%Co–5%MgO >15%Co > 15%Ni > 10%Ni–5%MgO.
Elsevier
以上显示的是最相近的搜索结果。 查看全部搜索结果