In this paper, an optimizing model of battery energy storage system (BESS) capacity configuration for active distribution networks (ADNs) is proposed to mitigate the negative effect of distribution systems with distributed generations (DGs), in stability, economy and reliability perspectives. In details, this model involved the charging and discharging limitation and the operation constrains of BESS, as well as the power flow balance of distribution system. Moreover, three optimizing objectives have been presented for the optimal power profile of BESS, including minimizing the voltage fluctuation, reducing the feeder loss and maximizing the consecutive supplied power of ADN, respectively. After the optimization, the BESS capacity is calculated by estimation of the maximum charging and discharging energy. Finally, the simulation results are shown to illustrate the procedure of capacity configuration.