Residual stresses are often the cause for cracks in weld constructions. That is why the residual stress level, induced by manufacturing process, plays a crucial role. The present study aims on the effect of multiple repair weld procedures on a high-strength structural steel S690QL. The widespread technology of carbon arc-air gouging was applied. The weld zone and the heat-affected zone (HAZ) were subjected to multiple thermal cycles by gouging and subsequent repair welding. The investigations were focused on the change of the residuals stresses, the impact on the microstructure and the changes for the mechanical properties of the repair welded joint. The residual stresses were determined by X-ray diffraction. The results have shown a significant dependence for the residual stress levels from the repair cycle. In addition, distinctive changes in microstructures and hence mechanical properties occurred. The fusion line of the repair weld and the adjacent HAZ are the most critical areas. This is where the loss of ductility is most pronounced.