An ability to predict species’ sensitivities to habitat loss and fragmentation has important conservation implications, and numerous hypotheses have been proposed to explain interspecific differences observed in human‐dominated landscapes. We used occupancy data collected on 32 species of vertebrates (16 mammals and 16 amphibians) in an agricultural landscape of Indiana, USA, to compare hypotheses that focus on different causal mechanisms underlying interspecific variation in responses to habitat alteration: (1) body size; (2) morphology and development; (3) behaviour; (4) niche breadth; (5) proximity to range boundary; and multiple‐process models combining main effects and interactions of hypotheses (1)–(2) and (4)–(5). The majority of habitat alteration occurred over a century ago and coincided with extinction of several species; thus, our study dealt only with variation in responses of extant species that often are considered ‘resistant’ to human modifications of native habitat. Corrected Akaike scores and Akaike weights provided strongest support for models incorporating niche breadth and proximity to range boundary. Measures of dietary and habitat breadth obtained from the literature were negatively correlated with sensitivity to habitat alteration. Additionally, greater sensitivity was observed for species occurring at the periphery of their geographical ranges, especially at northern or western margins. Body size, morphological, developmental and behavioural traits were inferior predictors of tolerance to fragmentation for the species and landscape we examined. Our findings reinforce the importance of niche breadth as a predictor of species’ responses to habitat alteration. They also highlight the importance of viewing the effects of habitat loss and fragmentation in a landscape within a biogeographical context that considers a species’ level of adaptation to local environmental conditions.