Retinal oximetry and systemic arterial oxygen levels

TS Eliasdottir - Acta ophthalmologica, 2018 - Wiley Online Library
Acta ophthalmologica, 2018Wiley Online Library
Purpose Continuous peripheral pulse oximetry for monitoring adequacy of oxygenation is
probably the most important technological advance for patients' monitoring and safety in the
last decades. Pulse oximetry has the disadvantage of measuring the peripheral circulation,
and the only mean to measure oxygen content of the central circulation is by invasive
technology. Determination of blood oxyhaemoglobin saturation in the retinal vessels of the
eye can be achieved noninvasively through spectrophotometric retinal oximetry which …
Purpose
Continuous peripheral pulse oximetry for monitoring adequacy of oxygenation is probably the most important technological advance for patients’ monitoring and safety in the last decades. Pulse oximetry has the disadvantage of measuring the peripheral circulation, and the only mean to measure oxygen content of the central circulation is by invasive technology. Determination of blood oxyhaemoglobin saturation in the retinal vessels of the eye can be achieved noninvasively through spectrophotometric retinal oximetry which provides access to the central nervous system circulation. The aim of the thesis was to determine whether retinal oximetry technique can be applied for estimation of the central nervous system circulation which until now has only been possible invasively. This was achieved by measuring oxyhaemoglobin saturation in three adult subject study groups: in people with central retinal vein occlusion (CRVO) to observe local tissue hypoxia, in patients with severe chronic obstructive pulmonary disease (COPD) on long‐term oxygen therapy to observe systemic hypoxaemia and in healthy subjects during hyperoxic breathing to observe systemic hyperoxemia. In addition, the fourth study that is mentioned was performed to test whether retinal oximetry is feasible for neonates.
Methods
Retinal oximetry in central retinal vein occlusion: Sixteen subjects with central retinal vein occlusion participated in the study. The oxyhaemoglobin saturation of the central retinal vein occlusion affected eye was compared with the fellow unaffected eye. Retinal oximetry in healthy people under hyperoxia: Thirty healthy subjects participated in the study, and the oxyhaemoglobin saturation of retinal arterioles and venules was compared between normoxic and hyperoxic breathing. Retinal oximetry in severe chronic obstructive pulmonary disease: Eleven patients with severe chronic obstructive pulmonary disease participated in the study. Retinal oximetry measurements were made with and without their daily supplemental oxygen therapy. Retinal arteriolar oxyhaemoglobin saturation when inspiring ambient air was compared with blood samples from the radial artery and finger pulse oximetry and healthy controls. The healthy control group was assembled from our database for comparison of oxyhaemoglobin saturation of retinal arterioles and venules during the ambient air breathing. The retinal oximeter is based on a conventional fundus camera and a specialized software. A beam splitter coupled with two high‐resolution digital cameras allows for simultaneous acquisition of retinal images at separative wavelengths for calculation of oxyhaemoglobin saturation. In addition, retinal images of 28 full‐term healthy neonates were obtained with scanning laser ophthalmoscope combined with modified Oxymap analysis software for calculation of the optical density ratio and vessel diameter
Results
Retinal oximetry in central retinal vein occlusion: Mean retinal venous oxyhaemoglobin saturation was 31 ± 12% in CRVO eyes and 52 ± 11% in unaffected fellow eyes (mean ± SD, n = 14, p < 0.0001). The arteriovenous oxygen difference (AV‐difference) was 63 ± 11% in CRVO eyes and 43 ± 7% in fellow eyes (p < 0.0001). The variability of retinal venous oxyhaemoglobin saturation was considerable within and between eyes affected by CRVO. There was no difference in oxyhaemoglobin saturation of retinal arterioles between the CRVO eyes and the unaffected eyes (p = 0.49). Retinal oximetry in healthy people under hyperoxia: During hyperoxic breathing, the oxyhaemoglobin saturation in retinal arterioles increased to 94.5 ± 3.8% as compared with 92.0 ± 3.7% at …
Wiley Online Library
以上显示的是最相近的搜索结果。 查看全部搜索结果