Review of fast charging strategies for lithium-ion battery systems and their applicability for battery electric vehicles

N Wassiliadis, J Schneider, A Frank, L Wildfeuer… - Journal of energy …, 2021 - Elsevier
N Wassiliadis, J Schneider, A Frank, L Wildfeuer, X Lin, A Jossen, M Lienkamp
Journal of energy storage, 2021Elsevier
Despite fast technological advances, world-wide adaption of battery electric vehicles (BEVs)
is still hampered—mainly by limited driving ranges and high charging times. Reducing the
charging time down to 15 min, which is close to the refueling times of conventional vehicles,
has been promoted as the solution to the range anxiety problem. However, simply
increasing the charging current has been known to accelerate battery aging
disproportionally, leading to severe capacity and power fade while posing an unacceptable …
Abstract
Despite fast technological advances, world-wide adaption of battery electric vehicles (BEVs) is still hampered—mainly by limited driving ranges and high charging times. Reducing the charging time down to 15 min, which is close to the refueling times of conventional vehicles, has been promoted as the solution to the range anxiety problem. However, simply increasing the charging current has been known to accelerate battery aging disproportionally, leading to severe capacity and power fade while posing an unacceptable safety hazard during operation. Many different approaches have been taken to develop new fast charging strategies for battery management systems to solve the dilemma between charging speed and battery aging. To date, there is no consensus on how to optimally determine a fast and health-aware charging strategy. From an application-oriented perspective, the questions arise of what the advantages and disadvantages of the various methods are and how they can be applied. This article presents a comprehensive review and novel approach for classification of over 50 studies in fast charging strategy determination of the state of the art. We evaluate and compare all studies according to the underlying parameterization effort, the battery cell under study, and whether a proof of concept with conditions close to real-world applications has been performed. The advantages and disadvantages of the analyzed methods are critically discussed and evaluated with regard to their cost–benefit ratio. Finally, the finding are used to identify remaining research gaps in order to enable a transfer to electric vehicle applications.
Elsevier
以上显示的是最相近的搜索结果。 查看全部搜索结果