Robust sparse linear discriminant analysis

J Wen, X Fang, J Cui, L Fei, K Yan… - IEEE Transactions on …, 2018 - ieeexplore.ieee.org
… improve the robustness to noise, we introduce a sparse error … of the original data in the
discriminant subspace, the proposed … a novel and robust sparse discriminative feature extraction …

Robust and sparse linear discriminant analysis via an alternating direction method of multipliers

CN Li, YH Shao, W Yin, MZ Liu - IEEE transactions on neural …, 2019 - ieeexplore.ieee.org
… CONCLUSION This paper proposed a robust discriminant analysis cri… sparse version RSLDA
by considering an extra sparse regularization term. This makes our methods more robust to …

Understanding and evaluating sparse linear discriminant analysis

Y Wu, D Wipf, JM Yun - Artificial Intelligence and Statistics, 2015 - proceedings.mlr.press
… Classical linear discriminant analysis (LDA) or Fisher’s LDA addresses the classification …
can be mapped into the most discriminative low-dimensional subspace (Fisher, 1936; Hastie et …

Linear discriminant analysis

S Zhao, B Zhang, J Yang, J Zhou, Y Xu - Nature Reviews Methods …, 2024 - nature.com
… the linear discriminant analysis (LDA) (part b), sparse LDA (part c) and robust sparse LDA
(… Obviously, the projected matrices obtained by sparse LDA and robust sparse LDA present a …

Robust feature-sample linear discriminant analysis for brain disorders diagnosis

E Adeli-Mosabbeb, KH Thung, L An… - Advances in Neural …, 2015 - proceedings.neurips.cc
Discriminative methods pursue a direct … , linear discriminant analysis (LDA) aims to find the
mapping that reduces the input dimensionality, while preserving the most class discriminatory

Sparse discriminant analysis

L Clemmensen, T Hastie, D Witten, B Ersbøll - Technometrics, 2011 - Taylor & Francis
Sparse discriminant analysis is based on the optimal scoring interpretation of linear
discriminant analysis, and can be extended to perform sparse discrimination via mixtures of …

Structured sparse linear discriminant analysis

Z Cui, S Shan, H Zhang, S Lao… - 2012 19th IEEE …, 2012 - ieeexplore.ieee.org
Linear Discriminant Analysis (LDA) is an efficient image feature extraction technique by
supervised dimensionality reduction. In this paper, we extend LDA to Structured Sparse LDA (…

Efficient and Robust Sparse Linear Discriminant Analysis for Data Classification

J Liu, M Feng, X Xiu, W Liu… - IEEE Transactions on …, 2024 - ieeexplore.ieee.org
… efficient and robust sparse linear discriminant analysis (… L2,p-norm can bring higher
robustness and better accuracy. … , which further enhances the robustness in different scenarios. In …

A new formulation of linear discriminant analysis for robust dimensionality reduction

H Zhao, Z Wang, F Nie - IEEE Transactions on Knowledge and …, 2018 - ieeexplore.ieee.org
… of robust linear discriminant analysis for dimensionality reduction which joints L2;1-norm on
objective function … such as multivariate linear regression, PCA and sparse coding and exploit …

Generalized robust linear discriminant analysis for jointly sparse learning

Y Zhu, Z Lai, C Gao, H Kong - Applied Intelligence, 2024 - Springer
Linear discriminant analysis (LDA) is a well-known supervised method that … robust linear
discriminant analysis (GRLDA) method to tackle this disadvantage and improve the robustness. …