Infectious bursal disease virus (IBDV) induces an acute, highly contagious immunosuppressive disease in young chickens. We examined the role of T cells in IBDV-induced immunopathogenesis and tissue recovery. T cell-intact chickens and birds compromised in their T cell function by a combination of surgical thymectomy and Cyclosporin A treatment (Tx-CsA) were infected with an intermediate vaccine strain of IBDV (Bursine 2, Fort Dodge). Our data revealed that functional T cells were needed to control the IBDV-antigen load in the acute phase of infection at 5 days post infection. The target organ of IBDV, the bursa of Fabricius, of Tx-CsA-birds had a significantly higher antigen load than the one of T cell-intact birds (P < 0.05). Tx-CsA-treatment abrogated the IBDV-induced inflammatory response and significantly (P < 0.05) reduced the incidence of apoptotic bursa cells and the expression of cytokines such as interleukin 2 (IL-2) and interferon-γ (IFN-γ) in comparison to T cell-intact birds. T cell-released IL-2 and IFN-γ may have mediated the induction of inflammation and cell death in T cell-intact birds. The IBDV-induced upregulation of tumor necrosis like-factor (TNF) expression was comparable between T cell-intact and Tx-CsA-birds. Tx-CsA-birds showed a significantly faster resolution of IBDV-induced bursa lesions than T cell-intact birds (P < 0.05). This study suggests that T cells modulate IBDV pathogenesis in two ways: a) they limit viral replication in the bursa in the early phase of the disease at 5 days post infection, and b) intrabursal T cells promote bursal tissue damage and delay tissue recovery possibly through the release of cytokines and cytotoxic effects.