Rosmarinic acid mediated neuroprotective effects against H2O2-induced neuronal cell damage in N2A cells

H Ghaffari, M Venkataramana, BJ Ghassam… - Life Sciences, 2014 - Elsevier
H Ghaffari, M Venkataramana, BJ Ghassam, SC Nayaka, A Nataraju, NP Geetha
Life Sciences, 2014Elsevier
Aims Oxidative stress plays a key role in several ailments including neurodegenerative
conditions. The aim of the study was to demonstrate the effect of rosmarinic acid (RA) in
preventing oxidative stress related death of neuronal cell lines. Main methods In the present
study, we demonstrated direct neuroprotective effect of RA using H 2 O 2-induced oxidative
challenge in N2A mouse neuroblastoma cells. The mechanism of neutralization of H 2 O 2-
induced toxicity by RA was evaluated using MTT, lactate dehydrogenase, mitochondrial …
Aims
Oxidative stress plays a key role in several ailments including neurodegenerative conditions. The aim of the study was to demonstrate the effect of rosmarinic acid (RA) in preventing oxidative stress related death of neuronal cell lines.
Main methods
In the present study, we demonstrated direct neuroprotective effect of RA using H2O2-induced oxidative challenge in N2A mouse neuroblastoma cells. The mechanism of neutralization of H2O2-induced toxicity by RA was evaluated using MTT, lactate dehydrogenase, mitochondrial membrane potential (MMP), intracellular ROS, and comet assays. Up-regulation of brain neuronal markers at molecular level was performed by RT-PCR.
Key findings
Results presented in the paper indicate that H2O2-induced cytotoxicity in N2A cells was suppressed by treatment with RA. Moreover, RA is very effective in attenuating the disruption of lactate dehydrogenase, mitochondrial membrane potential and intracellular ROS. Pretreatment with RA significantly prevents genotoxicity (3.7-fold, p < 0.01) and promotes the up-regulation of tyrosine hydroxylase (TH) (4.5-fold, p < 0.01), and brain-derived neurotrophic factor (BDNF) genes (5.4-fold, p < 0.01) against H2O2-induced cytotoxicity in N2A cells.
Significance
Our results revealed that N2A cells are suitable cellular models to evaluate neuroprotective effects of RA, and suggest that RA may potentially serve as an agent for prevention of several human neurodegenerative diseases caused by oxidative stress.
Elsevier
以上显示的是最相近的搜索结果。 查看全部搜索结果