Although sexual selection through female choice explains exaggerated male ornaments in many species, the evolution of the multicomponent nature of most sexual displays remains poorly understood. Theoretical models suggest that handicap signaling should converge on a single most informative quality indicator, whereas additional signals are more likely to be arbitrary Fisherian traits, amplifiers, or exploitations of receiver psychology. Male nuptial plumage in the highly polygynous red‐collared widowbird (Euplectes ardens) comprises two of the commonly advocated quality advertisements (handicaps) in birds: a long graduated tail and red carotenoid coloration. Here we use multivariate selection analysis to investigate female choice in relation to male tail length, color (reflectance) of the collar, other aspects of morphology, ectoparasite load, display rate, and territory quality. The order and total number of active nests obtained are used as measures of male reproductive success. We demonstrate a strong female preference and net sexual selection for long tails, but marginal or no effects of color, morphology, or territory quality. Tail length explained 47% of male reproductive success, an unusually strong fitness effect of natural ornament variation. Fluctuating tail asymmetry was unrelated to tail length, and had no impact on mating success. For the red collar, there was negative net selection on collar area, presumably via its negative relationship with tail length. None of the color variables (hue, chroma, and brightness) had significant selection differentials, but a partial effect (selection gradient) of chroma might represent a color preference when tail length is controlled for. We suggest that the red collar functions in male agonistic interactions, which has been strongly supported by subsequent work. Thus, female choice targets only one handicap, extreme tail elongation, disregarding or even selecting against the carotenoid display. We discuss whether long tails might be better indicators of genetic quality than carotenoid pigmentation. As regards the evolution of multiple ornaments, we propose that multiple handicap signaling is stable not because of multiple messages but because of multiple receivers, in this case females and males.