Short-wavelength out-of-band EUV emission from Sn laser-produced plasma

F Torretti, R Schupp, D Kurilovich… - Journal of Physics B …, 2018 - iopscience.iop.org
F Torretti, R Schupp, D Kurilovich, A Bayerle, J Scheers, W Ubachs, R Hoekstra
Journal of Physics B: Atomic, Molecular and Optical Physics, 2018iopscience.iop.org
We present the results of spectroscopic measurements in the extreme ultraviolet regime (7–
17 nm) of molten tin microdroplets illuminated by a high-intensity 3 J, 60 ns Nd: YAG laser
pulse. The strong 13.5 nm emission from this laser-produced plasma (LPP) is of relevance
for next-generation nanolithography machines. Here, we focus on the shorter wavelength
features between 7 and 12 nm which have so far remained poorly investigated despite their
diagnostic relevance. Using flexible atomic code calculations and local thermodynamic …
Abstract
We present the results of spectroscopic measurements in the extreme ultraviolet regime (7–17 nm) of molten tin microdroplets illuminated by a high-intensity 3 J, 60 ns Nd: YAG laser pulse. The strong 13.5 nm emission from this laser-produced plasma (LPP) is of relevance for next-generation nanolithography machines. Here, we focus on the shorter wavelength features between 7 and 12 nm which have so far remained poorly investigated despite their diagnostic relevance. Using flexible atomic code calculations and local thermodynamic equilibrium arguments, we show that the line features in this region of the spectrum can be explained by transitions from high-lying configurations within the Sn –Sn ions. The dominant transitions for all ions but Sn are found to be electric-dipole transitions towards the n= 4 ground state from the core-excited configuration in which a 4p electron is promoted to the 5s subshell. Our results resolve some long-standing spectroscopic issues and provide reliable charge state identification for Sn LPP, which could be employed as a useful tool for diagnostic purposes.
iopscience.iop.org
以上显示的是最相近的搜索结果。 查看全部搜索结果