Dense Ba1-xPbxTiO3 (x = 0–0.20) samples (>90% TD) were fabricated through a solid-state reaction route involving wet ball milling for 24 h and calcination at 1150°C for 4 h, followed by sintering at 1300°C for 4 h. XRD results for all the samples revealed a tetragonal perovskite (P4mm) crystal structure. Increased substitution of Pb caused monotonic growth in the tetragonality character of the perovskite phase. Although, the value of εrʹ dropped from an initial value of 3000 for x = 0 (pure BaTiO3) to 400 for x = 0.20 samples, the losses (tanδ) interestingly declined almost to half. A substantial increase in the Curie temperature from 120°C for x = 0°C to 180°C for x = 0.15 samples was noted. P-E loop analysis revealed an increase in the saturation polarization by almost 1.5 times, moreover, in the remnant polarization by six times with Pb-substitution. The d33 values demonstrated an increase from 95 pC/N for pure BaTiO3 samples to 220 pC/N for x = 0.15 samples.