Similarity Measures for Learning in Lattice Based Biomimetic Neural Networks

GX Ritter, G Urcid, LD Lara-Rodríguez - Mathematics, 2020 - mdpi.com
Mathematics, 2020mdpi.com
This paper presents a novel lattice based biomimetic neural network trained by means of a
similarity measure derived from a lattice positive valuation. For a wide class of pattern
recognition problems, the proposed artificial neural network, implemented as a dendritic
hetero-associative memory delivers high percentages of successful classification. The
memory is a feedforward dendritic network whose arithmetical operations are based on
lattice algebra and can be applied to real multivalued inputs. In this approach, the realization …
This paper presents a novel lattice based biomimetic neural network trained by means of a similarity measure derived from a lattice positive valuation. For a wide class of pattern recognition problems, the proposed artificial neural network, implemented as a dendritic hetero-associative memory delivers high percentages of successful classification. The memory is a feedforward dendritic network whose arithmetical operations are based on lattice algebra and can be applied to real multivalued inputs. In this approach, the realization of recognition tasks, shows the inherent capability of prototype-class pattern associations in a fast and straightforward manner without need of any iterative scheme subject to issues about convergence. Using an artificially designed data set we show how the proposed trained neural net classifies a test input pattern. Application to a few typical real-world data sets illustrate the overall network classification performance using different training and testing sample subsets generated randomly.
MDPI
以上显示的是最相近的搜索结果。 查看全部搜索结果