Simulation of object motion in a bubbling fluidized bed using a Monte Carlo method

LM Garcia-Gutierrez, A Soria-Verdugo… - Chemical Engineering …, 2013 - Elsevier
Chemical Engineering Science, 2013Elsevier
The motion of a large neutrally-buoyant object immersed in a 2D bubbling fluidized bed was
simulated using a Monte Carlo method. The object vertical trajectory within the bed was
simulated for a range of dimensionless gas velocities using a simple 1D model. The main
characteristics of the object motion were obtained from the trajectory simulation and
compared with experimental evidence giving good results. On a second step, the time scale
of the motion is introduced in the simulated data by means of well-known 2D correlations for …
The motion of a large neutrally-buoyant object immersed in a 2D bubbling fluidized bed was simulated using a Monte Carlo method. The object vertical trajectory within the bed was simulated for a range of dimensionless gas velocities using a simple 1D model. The main characteristics of the object motion were obtained from the trajectory simulation and compared with experimental evidence giving good results. On a second step, the time scale of the motion is introduced in the simulated data by means of well-known 2D correlations for the bubble and dense phase velocity. The circulation time of an object (from the instant when it leaves the freeboard and sinks in the dense phase till the moment it reappears back in the surface) was then obtained and compared with experimental data, showing a general agreement. Finally, an extrapolation for a 3D fluidized bed was made following a similar procedure.
Elsevier
以上显示的是最相近的搜索结果。 查看全部搜索结果

Google学术搜索按钮

example.edu/paper.pdf
搜索
获取 PDF 文件
引用
References